FAKULTAT FUR
INFORMATIK

Ityflfmt

SECURITY &
PRIVACY
GROUP e

Security and Privacy for \
Payment Channel Networks

Matteo Maffei ' ierc

OO
........

DLT 2020 - Ancona 5/2/2020

Scalability Problem

L)
‘
L)
v
v
v
v
v
v
v
L)
‘
-

~ »
ot BN
b

» Decentralized data structure recording each transaction in
order to provide public verifiability

» Global consensus: everyone checks the whole blockchain

Bitcoin’s transaction rate: ~10 tx/sec
Visa’s transaction rate: ~10K tx/sec

Scalability Solutions

» On-chain, consensus layer (tweak consensus)
e.g., DAG Blockchain, sharding, ...

» Off-chain, application layer (local consensus, blockchain used
only in case of disputes)

e Payment Channel Networks

Lk Lightning Network P Raiden Network
(Bitcoin) RAIDEN (Ethereum)

e Many other research projects (Bolt, Z-Channels,
Tumblebit, Perun, ...)

Scalability Solutions

» On-chain, consensus layer (tweak consensus)
e.g., DAG Blockchain, sharding, ...

» Off-chain, application layer (local consensus, blockchain used
only in case of disputes)

e Payment Channel Networks

Lk Lightning Network P Raiden Network
(Bitcoin) RAIDEN (Ethereum)

e Many other research projects (Bolt, Z-Channels,
Tumblebit, Perun, ...)

Background on
Payment Channel Networks

Payment Channels: Open

4l -

Alice Bob

Blockchain

P

Payment Channels: Open

Multisig Contract

signatures of both Alice and Bob

__

’ ﬂ > 5(Alice,Bob) / ~
5 (Alice) &l
' i Bob

Blockchain

» Alice creates multisig contract to
deposit money on the channel

P

Payment Channels: Open

Multisig Contract

signatures of both Alice and Bob

__

> 5(Alice,Bob) | ~
5 (Alice) &l
; Bob |

Alice
Timelock
: : The transaction is valid only after a
L certain time g
G/ Alice,Bob)
Blockchain

» Alice creates multisig contract to
deposit money on the channel

» Alice lets Bob sign a refund
transaction to unlock the money

P

Payment Channels: Open

il -

Alice Bob

Ikl Shi: : » Alice creates multisig contract to
| ' deposit money on the channel

> 5 (Alice,Bob)

» Alice lets Bob sign a refund
transaction to unlock the money

S » Alice places the multisig contract

onchain

Payment Channels: Transactions

' ﬂ > 4 (Alice)

5 (Alice, Bob)

1 (Bob) .,

__

Payment Channels: Transactions

) ﬂ © 3(Alice)

5 (Alice, Bob)

Alice E * 2 (Bob) —
T A C " Alice ?? Bob)
Under the hood /
Mechanisms for bidirectional payments
. and for revocation of old states
Blockchain

__

Payment Channels: Close

) &)

Alice Bob

Blockchain

__

5 (Alice, Bob)

Payment Channel Networks (PCNSs)

-+ &)
ﬂ | o | o

Alice Bob Carol
Send 1
BTC to Carol

One cannot open channels with everyone...
=, exploit channel paths!

10

Payment Channel Networks (PCNSs)

{) e O] 8

Alice Bob Carol
Send 1
BTC to Carol

~

£
BN @: aca BN : | &

Alice Bob Carol

10

Payment Channel Networks (PCNSs)

YN - Dol . EEmiEh

Alice Bob Carol
Send 1

~

Q—Zu 3

Alice Bob
1. Send 1 BTC

re

O om0

Alice Bob Carol
2. Forward 1 BTC to Carol

10

Payment Channel Networks (PCNSs)

3 o
dabh

Carol

Carol

1. Send 1 BTC + fee to Bob

4)) O
3-fee ¢
A il

Alice , , Bob
Fee acts as an incentive for

Bob to participate in the 2. Forward 1 BTC to Carol

payment

10

Payment Channel Networks (PCNSs)

~

FeN - Djpel] 8

Alice Bob Carol
Send 1
BTC to Carol
Should happen atomically

v
’ (o) ,
-] an
Alice Bob Carol

1. Send 1 BTC + fee to Bob

re

)
'ﬂ Bfee an I ahm

Alice _ , Bob Carol
Fee acts as an incentive for
Bob to participate in the 2. Forward 1 BTC to Carol

ayment
pay)

—

The Lightning Network (LN)

Hashtime Lock Contract (HTLC)

12

Hashtime Lock Contract (HTLC)

By revealing the preimage x of
the hash y=h(x), Bob can
enforce the payment

5 (Alice, Bob)

4 (Alice)

1 (Bob)

12

Hashtime Lock Contract (HTLC)

S ~

Alice) =
. 5 (Alice, Bob)
Alice o TED — Bob

The transaction is valid
only until time

By revealing the preimage x of
the hash y=h(x), Bob can
enforce the payment

12

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

By revealing the preimage x of
the hash y=h(x), Bob can
enforce the payment

HTLC (Alice, Bob, 1, v,):
Alice pays Bob 1 BTC iff Bob shows some
x such that H(x) = y before ')

The transaction is valid
only until time

12

HTLC for Multi-hop Payments

HTLC for Multi-hop Payments

HTLC for Multi-hop Payments

HTLC(Alice, Bob, 1.1, y, t)

13

HTLC for Multi-hop Payments

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, vy, t’)

p ~
Jo Bt

Alice Bob

13

HTLC for Multi-hop Payments

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, vy, t’)

p ~
Jo Bt

Alice Bob

HTLC for Multi-hop Payments

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, vy, t’)

s IR

Alice <

HTLC for Multi-hop Payments

Requirement: t > t’
(after Carol revealed x to Bob, there

must still be time for Bob to reveal x to
Alice)
HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, vy, t’)

o R

Alice <

Take home...

HTLC(Alice. Bob. 1.1, v. t) HTLC(Bob. Carol. 1. v. t’)

Alice < Bob <

» Lightning Network & Co work allow us to perform payments offchain
e fast, no confirmation delay
o little fees
e minimal information stored on the blockchain
e Secure and privacy-preserving (at a first glance...)
» The blockchain is used only to mediate disputes...cool!

14

Security + Privacy in PCNs

Are off-chain payments in PCNs secure?
(No honest participant looses money)

Are off-chain payments in PCNs privacy-preserving
by default?

(individual payments are not recorded on the blockchain)

15

Security + Privacy in PCNs

Are off-chain payments in PCNs secure?
(No honest participant looses money)

Are off-chain payments in PCNs privacy-preserving
by default?

(individual payments are not recorded on the blockchain

15

Security and Privacy Issues in
Existing PCNs

Friedrich

Aniket K
Purdue Unive

in are inherently limited in transaction throughput
e focus on off-chain pay:
ble an unlimited number of p:

s and is fully compatible with the Bitcoin scripting
of conc

Anonymous Multi-Hop Locks for Blockcha
Scalability and Interoperability

Giulio Malavolta*$, Pedro Moreno-Sanchez*¥f, Clara Schneidewind', Aniket Kate?, Matteo Maffeif
SFriedrich Alexander-University Erlangen-Niirnberg, TTU Wien, ¥ Purdue University

Abstract—Tremendous growth in cryptocurrency usage
is exposing the inherent scalability issues with permis-
onless blockchain technology. Payment-channel networks
(PCNs) have emerged as the most widely deployed solution
to mitigate the scalal y issues, allowing the bulk of
payments between two users to be carried out off-chain.
Unfortunately, as reported in the literature and further
demonstrates this paper, current PCNs do not provide
meaningful security and privacy guarantees [32], [42].

In this work, we study and design secure and privacy-
preserving PCNs. We start with a security analysis of exist-
ing PCNs, reporting a new attack that applies to all major
PCNs, including the Lightning Network, and allows an
attacker to steal the fees from honest intermediaries in the
same payment path. We then formally define anonymous
multi-hop locks (AMHLS), a novel cryptographic primitive
that serves as a cornerstone for the design of secure and

‘Ns. We present several provably
secure cryptographic instantiations that make AMHLs
compatible with the vast majority of cryptocurrencies. In
pamcular, we show that (linear) homomorpluc one-way

I. INTRODUCTION

Cryptocurrencies are growing in popularity and are
playing an increasing role in the worldwide financial
ecosystem. In fact, the number of Bitcoin transaction
grew by approximately 30% in 2017, reaching a peak
of more than 420, 000 transactions per day in December
2017 [2]. This striking increase in demand has given
rise to scalability s [20], which go well beyond the
rapidly increasing size of the blockchain. For instance,
the permissionless nature of the consensus algorithm
used in Bitcoin today limits the transaction rate to
tens of transactions per second, whereas other payment
networks such as Visa support peaks of up to 47,000
transactions per second [9].

Among the various proposals to solve the scalability
issue [22], :] [401], [@]. payment-channels have
emerged as the most widely deployed solution in prac-
tice. In a nutshell, two users open a payment channel
by cnmmltlmg a :male lran:'lclmn to Ihe blockLh'un

Security Issue: The Wormhole Attack

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

{ i o &

A E Ez

BN aall
B

17

Security Issue: The Wormhole Attack

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

{ "

A E

BN aall
B

17

Security Issue: The Wormhole Attack

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

{ "

A E

17

Security Issue: The Wormhole Attack

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

B |
A < E <
X _/

17

Security Issue: The Wormhole Attack

()

B considers the payment to be
failed and unlocks his funds
after the timeout

-

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) \/HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

~

E

Il

Security Issue: The Wormhole Attack

()

B considers the payment to be
failed and unlocks his funds
after the timeout

-

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) \/HTLC(B, E2,1.1,y, t3) HTLC(Ez, C,1,y, ta)

|

/\ /\
- N y - N "'-@

gets 1.3 (no pays 1 (no payment | | Y:=H(X)
payment to B) from B)

Il

B E, < C

Attacker earns 0.3 BTC (own fees + B’s fees)

17

Privacy Issues in HTLC Payments

HTLC(A,E1,v1,Y,t1)

ﬂ HTLC(E2,C,v4,Y,t4)
dah
A HTLC(E1,B,v2,Y,t2) HTLC(B,Ez2,v3,Y,t3) C

ey

adl |
ﬂ HTLC(E1,B,V2,y’,t2) HTLC(B,EZ,VLV’:U)

. ’ . |
. HTLC(A,E1,v1,Y) HTLC(E2,C,va, Y, ta) am

Relationship Anonymity: On-path adversaries do not learn who pays to whom
18

Privacy Issues in HTLC Payments

HTLC(A,E1,v1,Y,t1)

ﬂ HTLC(E2,C,v4,Y,t4)
dabh
A HTLC(E1,B,v2,Y,t2) HTLC(B,Ez2,v3,Y,t3) C

ey

adl |
ﬂ HTLC(E1,B,V2,y’,t2) HTLC(B,EZ,VLV’:U)

B ey) HTLC(E,Cva Y) “
A’
(I) C’
ﬂ pays to J ﬂ pays to)
ot ; o o ;
____________________________ da bk

Relationship Anonymity: On-path adversaries do not learn who pays to whom
18

Privacy Issues in HTLC Payments

HTLC(A,E+,v
(A.E 1@1) HTLC(Ez,c,V4@4)

ﬂ ah
A \ HTLC(E1,B,Vz®t2) HTLC(B,Ez,w@a) / C

ey

i |
ﬂ i HTLC(E1,B,Vztz) HTLC(B,Ez,V3,@t3) :

HTLC(A,E1,V1@t1) HT"C(EZ’C’V“@t“) abk
A’
(I) C’
ﬂ pays to J ﬂ pays to)
ot ; o o ;
____________________________ da bk

Relationship Anonymity: On-path adversaries do not learn who pays to whom

18

Privacy Issues in HTLC Payments

HTLC(A,Ex1,v
(A ‘@1) HTLC(Ez,c,V4@4)

ﬂ ab
A \ HTLC(Er,B,v2fY) HTLC(B,E2,v Y 13) / C
‘ ! / HTLC(E1,B,Vzt2) HTLC(B,Ez,V3,@t3) \

HTLC(A,E1,V1t1) HTLC(EZ’C’V“@t“) “
A’
1 I) C’
pays to)
{1 ﬂ paso)
g g da b
_ J

Relationship Anonymity: On-path adversariffs do not learn who pays to whom

18

Anonymous Multi-hop Locks

(k1 + k2 + k3 + k4)

(L o

A

(k2, C2) (ks, C3) (k4, C4)
ki*G (k1 + k2)*G (k1 + k2 + k3)*G [(k1 + k2 + k3 + ka)*G J
Lock(A, E1,1.3,C1,t1) Lock(E+,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)
v v v

E

BN

I

i
B

e,

Ez

v

C

19

Anonymous Multi-hop Locks

(kz2, C2)

Conditions look random
(as they differ by a secret random
factor)

;\ / (ks, C3)
Y

(k4, Ca)

(k1 + k2 + k3 + k4)

(L o

A

ki*G

Lock(A, E1,1.3,C1,t4)

v

E

Lock(E+1,B,1.2,C2,t2)

(k1 + k2)*G

v

BN

i
B

(k1 + k2 + k3)*G

Lock(B,E2,1.1,C3,t3)

I

e,

[(k1 + k2 + k3 + ka)*G J

Lock(E2,C,1,C4, t4)

v

Ez

v

-

C

19

Anonymous Multi-hop Locks

Conditions look random
(as they differ by a secret random

factor)

(kz2, C2)

;\ / (ks, C3)
Y

(k4, Ca)

(k1 + k2 + k3 + k4)

(L o

A

ki*G

Lock(A, E1,1.3,C1,t4)

(k1 + k2)*G

Lock(E+1,B,1.2,C2,t2)

v

BN

E

(k1 + k2 + k3)*G

Lock(B,E2,1.1,C3,t3)

v

I

i
B

l

[(k1 + k2 + k3 + ka)*G J

Lock(E2,C,1,C4, t4)

v

— T~
B |

<&
<

Ez

(k1 + k2 + k3 + Kks)

v

-

ab

C

19

Anonymous Multi-hop Locks

Conditions look random
(as they differ by a secret random

factor)

(kz2, C2)

;\ / (ks, C3)
Y

(k4, Ca)

(k1 + k2 + k3 + k4)

(L o

A

ki*G

Lock(A, E1,1.3,C1,t4)

(k1 + k2)*G

Lock(E+1,B,1.2,C2,t2)

v

BN

E

(k1 + k2 + k3)*G

Lock(B,E2,1.1,C3,t3)

v

.

i
B

g,

[(k1 + k2 + k3 + ka)*G J

Lock(E2,C,1,C4, t4)

v

<
<

(k1 + ka2 + k3)

¥~

E, <

(k1 + k2 + k3 + Kks)
/

- k4

v

-

C

19

Anonymous Multi-hop Locks

Conditions look random
(as they differ by a secret random

factor)

(kz2, C2)

;\ / (ks, C3)
Y

(ks, C4)

(k1 + k2 + k3 + k4)

(L

A

ki*G

Lock(A, E1,1.3,C1,t4)

(k1 + k2)*G

Lock(E+1,B,1.2,C2,t2)

v

Il

(k1 + k2 + k3)*G

Lock(B,E2,1.1,C3,t3)

v

.

g,

[(k1 + k2 + k3 + ka)*G J

Lock(E2,C,1,C4, t4)

v

i
E1 < B < EZ <
(k1 + k) (k1 + k2 + k3) (k1 + k2 + k3 + ka)
AN L ~— —
- k3 - k4

v

-

C

19

Anonymous Multi-hop Locks

(kz2, C2)

Conditions look random
(as they differ by a secret random

factor)

(k4, Ca)

(k1 + k2 + k3 + k4)

ki*G

Lock(A, E1,1.3,C1,t4)

(-

v

;\ / (ks, C3)
Y

(k1 + k2)*G

Lock(E+1,B,1.2,C2,t2)

v

(k1 + k2 + k3)*G

Lock(B,E2,1.1,C3,t3)

.

/\"
-

[(k1 + k2 + k3 + ka)*G J

Lock(E2,C,1,C4, t4)

v

ab

A

B

<
<

(k1 + ka2 + k3)

- k3

E, < C

(k1 + k2 + k3 + Kks)

L ~—

/
- k4

19

Anonymous Multi-hop Locks

(kz2, C2)

Conditions look random
(as they differ by a secret random

factor)

(ks, C4)

(k1 + k2 + k3 + k4)

A

ki*G

Lock(A, E1,1.3,C1,t4)

(=g

;\ / (ks, C3)
Y

(k1 + k2)*G

Lock(E+1,B,1.2,C2,t2)

Il

(k1 + k2 + k3)*G

Lock(B,E2,1.1,C3,t3)

v

.

g,

[(k1 + k2 + k3 + ka)*G J

Lock(E2,C,1,C4, t4)

v

alh
< Eq1 < B « E, <
ki (k1 + k2) (k1 + k2 + k3) (k1 + k2 + k3 + ka)
\ AN L ~— —
- k2 - k3 - k4
/\

A valid key can only be
extracted from a valid
key for the right lock

v

-

C

19

Anonymous Multi-hop Locks

Conditions look random
(as they differ by a secret random

factor)

(kz2, C2)

L\ / (ks, C3)
Y

(k4, C4)

(k1 + k2 +

ki*G

Lock(A, E1,1.3,C1,t4)

~

(k1 + k2)*G

Lock(E+1,B,1.2,C2,t2)

v

Il

<

E4

(k1 + k2 + k3)*G

Lock(B,E2,1.1,C3,t3)

v

.

i
B <«

4

[(k1 + k2 + k3 + ka)*G }

Lock(E2,C,1,C4, t4)

v

F-

<«

/\“

k3 + k4)

)
< C

1. Atomicity:

If a user’s right lock gets
opened, he can open his

left lock

Achieved Properties

2. Consistency:
A user can open his left
lock only if his right lock

was released

3. Relationship Anonymity:
A user learns about no other
participant of the payment

path than his direct
neighbours

19

Anonymous Multi-hop-Locks (AMHL)

éa)
Ideal functionality
(capturing atomicity,

consistency + relationship

anonymity)
N\ _J

/

provably realise in the UC framework

Construction from
homomorphic one-
way functions

Schnorr-based ECDSA-based
construction construction

compatible with
Bitcoin, Ethereum, etc.

Anonymous Multi-hop-Locks (AMHL)

éa)
Ideal functionality
(capturing atomicity,

consistency + relationship

anonymity)
N\ J

/

provably realise in the UC framework

Construction from
homomorphic one-
way functions

Schnorr-based ECDSA-based
construction construction

compatible with
Bitcoin, Ethereum, etc.

Scriptless Scripts

Scriptless Scripts
I

) &)

Alice
(ska)

‘ ‘ ; hypothetical “shared identity”
] skas = ska ™ sk
Blockchain o

5 (Alice) <:> =(:
> |
-- 21

Scriptless Scripts

, ﬂ > 4 (Alice) L

—. Bob

7?2k

D

' ‘ ; hypothetical “shared identity”
] skas = ska ™ sk
Blockchain o

(ske)

5 (Alice) @ =(

21

Scriptless Scripts |z

- N information for checking
that the “half signature”
Alice can retrieve produced by Alice and Bob

secret k from full can be completed to a
signature 4 1 valid signature given k
_ J

‘ ‘ ; hypothetical “shared identity”
] skas = ska ™ sk
Blockchain o

5 (Alice) @ =(:
> |
-- 21

Schnorr-based Lock, Simplified

sk; = x;
pky=x-G
Ri=r-G
sig(r;, m, sk, pk) = (R;, r; — sk; - H(pk;| | R;| | m))

Schnorr Signature for /

22

Schnorr-based Lock, Sim

plified

-

J

Skl = Xy Bob gets sufficient
kL=x-G information for checking
Alice can retrieve Py 1 Schnorr Slgnature for | | that the “half signature”
secret k from full R, =1 G produced by Alice and Bob
signature sig(r.,,m, sk, pk) = (R,,r; — sk - H(pk;| | R;| |m can be completed to a
: 8(r; Pk) = (Rp, i H(pki[| R [[m) valid signature given k
\ / - \ /
\/
k! C=K4€, transaction o
o .
+ Jointly, randomly generate C
o .
i g — skg - H(pk, - pkg||Ry + Rg + C||m)
— >
(rA-l-I”B) - (SkA+SkB) 'H(pkA +pkB| |RA+RB+ Cl |m) (I”A+I"B) - (SkA+SkB) 'H(pkA +pkB| |RA+RB+ Cl |m)

22

Schnorr-based Lock, Simplified

p
Skl = Xy Bob gets sufficient
k=x -G _ informati‘?n for.checkin%
Alice can retrieve ‘% =" G Schnorr Slgnature for | | that the “half signature
secret k from full =17 prOduged by Alllce Eciind Bob
signature sig(r,,m, sk, pk) = (R, r; — sk. - H(pk.| |R;| |m can be completed to a
: g(i» 1T, 315 P) (ok ! (p ’l | Il |)) valid signature given k
|\ J
\\// \v/
§ C=, transaction o)
..g Jointly, randomly generate C
A~ >
i g — skg - H(pk, - pkg||Ry + Rg + C||m)
S ra— sky - H(pky - pkg| Ry + Rg + C[|m)
—1 »
(rA-l-I”B) - (SkA+SkB) ‘H(pkA +pkB| |RA+RB+ Cl |m) (I”A+I"B) - (SkA+SkB) 'H(pkA +pkB| |RA+RB+ Cl |m)

After learning k, Bob can finalise the signature as

K+ (ry + rg) — (sky + skg) - H(pky + pkg||Ry + Rz + C||m)

And Alice can derive k from it

22

Schnorr-based Lock, Simplified

P
Skl = Xy Bob gets sufficient
k=x -G _ informati‘?n for.checkin%
Alice can retrieve ‘% =" G Schnorr Slgnature for | | that the “half signature
secret k from full =17 prOduged by Alllce Eciind Bob
signature sig(r,,m, sk, pk) = (R, r; — sk. - H(pk.| |R;| |m can be completed to a
: g(i» 1T, 315 P) (ok ! (p ’l | Il |)) valid signature given k
|\ J
\\// \v/
§ C=, transaction o)
% Jointly, randomly generate C
A~ >
i g — skg - H(pk, - pkg||Ry + Rg + C||m)
S ra— sky - H(pky - pkg| Ry + Rg + C[|m)
—1 »
(rA-l-I”B) - (SkA+SkB) ‘H(pkA +pkB| |RA+RB+ Cl |m) (I”A+I"B) - (SkA+SkB) 'H(pkA +pkB| |RA+RB+ Cl |m)

After learning k, Bob can finalise the signature as

K+ (ry + rg) — (sky + skg) - H(pky + pkg||Ry + Rz + C||m)

And Alice can derive k from it

' Hard for ECDSA as or has a non-linear structure,
for details please look at the paper |

B _ v L

22

Properties/Evaluation

» Security and Privacy proven in the UC Framework
» Compatible with Bitcoin and current PCNs

v Implemented in the Lightning Network
(https://github.com/cfromknecht/tpec), KZen, Comet, ...

» Reduces transaction size for conditional payments
v Encoding of condition within signature g ~
» Makes settlement transactions indistinguishable from regular
ones (Fungibility) (7 e o) ™
» Little overhead:

v < 500 bytes communication
v few ms computation

23

https://github.com/cfromknecht/tpec

)

Interoperability

AMHLs are suitable for cross-currency usage, even with
different primitive instantiations

v' Inter-currency payment channels

V' Atomic swaps

v" All major cryptocurrencies (including Monero [Moreno-
Sanchez et al., FC’20]) are supported

S A Sy G
(- B

24

Summary

The Wormbhole Attack:
A novel attack on Payment Channel
Network Security

AMHLs: A new primitive for secure +
anonymous Payment Channel Networks

Concrete constructions of AMHLs that

... are efficient ... got implemented in Bitcoin’s ... enable inter-blockchain
Lightning Network Payment Channels

IND e

Beyond Path-based Transactions

Atomic Multi-Channel Updates with Constant Collatera
in Payment-Channel Networks

ABSTRACT

Current cryptocurrencies provide a heavily limited transaction
throughput that is clearly insufficient to cater their growing adoption.

Payment-channel networks (PCNs) have emerged as the most widely

deployed scalability solution for today’s cryptocurrencies. While
PCNs do increase the transaction throughput by processing payments
off-chain and using the blockchain only as a dispute arbitrator, they
unfortunately require high collateral (i.e., they lock coins for a non-
constant time along the payment path) and do not achieve atomicity
of the channel updates. These issues have severe consequences in
practice. The high collateral enables denial-of-service attacks that
hamper the throughput and utility of the PCN. Moreover, the lack
of atomicity hinders the applicability of current PCNs in many im-
portant application scenarios. Unfortunately, current proposals do
not solve either of these issues or they require expressive scripting
languages, constraining their deployment to Ethereum.

In this work, we present AMCU, the first protocol for atomic
multi-channel updates and reduced collateral that is compatible with
Bitcoin (and other cryptocurrencies with reduced scripting capabi
ities). We provide a formal model in the Universal Composability
framework and show that AMCU realizes it, thus demonstrating that
AMCU achieves atomicity and state privacy. Moreover, the reduced

0 he co 0 Ns wh

Then, both users e ledger changes with each other through off-
chain accountable messages. Finally, when they are done, they set the
last agreed ledger state on the blockchain to get the corresponding
coins. For instance, Alice can open a channel with Bob by publishing
on the blockchain a transaction that transfers x coins from her to an
address addr shared by Alice and Bob. Subsequent payments from
Alice to Bob only require that Alice sends Bob an off-chain signed
transaction of y < x coins from addr to him. Bob can close the
channel by signing and adding on-chain the last transaction received
by Alice. Interestingly, it is possible to generalize this, technique to a
network of payment channels where two users can pay each other if
they are connected through a path of open payment channels [28].
The Lightning Network (LN) [28] for Bitcoin and the Raiden
Network [7] for Ethereum are the most widely deployed PCNs in
practice, and several implementations exist today [3, 5, 6]. Several
academic efforts have focused on designing solutions to enhance the
security [22], privacy [17, 21], concurrency [22, 32], availability [23],
and routing mechanisms [29] of PCNs, but many fundamental chal-
lenges remain open. In this paper we focus on two fundamental ones,
namely, atomicity and collateral, providing a solution to both.
Atomicity Challenge. A long-standing challenge in PCNs is the
atomicity of updates required in a path of payment channels to per-
form a multi-hop transaction. Without atomicity, it could be that

>

Open Challenges

In this work, we identify two open challenges:

e Restricted expressiveness (and functionality)

— Current Bitcoin-compatible PCNs restricted to single path-based
payments

e High collateral
— A payment requires to put aside coins for a very long time

27

4
4

Our Goal: Full Expressiveness

Support for arbitrary graph topology

Enable new applications:

4
4
4

Crowd funding
Channel rebalancing
Netting

Your own application?

o)
ro i
i
ah

28

Collateral

k+fees k coins
coins A time
nA time
/\
... -2 channels ... "‘

Each payment of k coins along an n-channel path requires to put aside at
least kn coins

Also, each user i has to lock her coins for a time A(n-i) where A is the time to
safely close a channel

Coins locked too long!

29

Griefing attack

k+fees
coins
nA time

‘m ... n-2 channels ...

» The adversary has a time amplification factor of n-1
» Ais 1 day in the Lightning network!
» The attacker can use several paths

k coins
A time

/_\

~

da bk

2.4

30

Our Goal: Constant Collateral

k+fees Kk Coins
nA time

‘/m ... n-2 channels ... ,/\“
da b

31

Our Goal: Constant Collateral

k+fees k+fees k coins
coins ——— > coins A time
nA time A time

... n-2 channels ... g
< 1 an &

» Constant collateral: Coins are locked only for A time, independently of the
number of channels

31

Our Goal: Constant Collateral

k+fees k+fees k coins
coins ——— > coins A time
nA time A time

... n-2 channels ... g
< 1 an &

» Constant collateral: Coins are locked only for A time, independently of the
number of channels

» Reduces the amplification factor

31

Our Goal: Constant Collateral

k+fees k+fees k coins
coins ——— > coins A time
nA time A time

... n-2 channels ... g
< 1 an &

» Constant collateral: Coins are locked only for A time, independently of the
number of channels

» Reduces the amplification factor
» Feasible in Ethereum-based PCNs: Sprites!

T A Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning.

Our Goal: Constant Collateral

k+fees k+fees k coins

coins —— > coins A time

nA time A time
... n-2 channels ... g
da bk

~

» Constant collateral: Coins are locked only for A time, independently of the
number of channels

» Reduces the amplification factor
» Feasible in Ethereum-based PCNs: Sprites!

a) Feasibility of constant locktimes in Bitcoin: Our con-
stant locktimes construction relies on a global contract mech-
anism, which is easily expressed in Ethereum, but cannot (we
conjecture) be emulated in Bitcoin without some modification
to its scripting system. Are there minimal modifications to
Bitcoin script that would enable constant locktimes?

T A Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning. 31

Our Goal: Constant Collateral

k+fees k+fees k coins

coins ——— > coins A time

nA time A time
... N-2 channels ... g o
dabh

» Constant collateral: Coins are locked only for A time, independently of the
number of channels

~

» Reduces the amplification factor
» Feasible in Ethereum-based PCNs: Sprites!

a) Feasibility of constant locktimes in Bitcoin: Our con-
stant locktimes construction relies on a global contract mech- |~
anism, which is easily expressed in Ethereum, but cannot (we AMCU: Constant collateral
conjecture) be emulated in Bitcoin without some modification §{ and backwards compatible
to its scripting system. Are there minimal modifications to } with Bitcoin script
Bitcoin script that would enable constant locktimes? £

T A Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning.

31

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

Split the channel so that
Phase 1 (Setup fOI’ A’B) 2 coins are still available

32

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

L I
i dahk

Phase 1 (Setup for A,B)

After some time you get
back the money (in case
(As,B3): 8 i of failure in the next

: phases)
: y BS \
' (As,B4): 8

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30) Phase 3 (Consume for A,B)
~ : (As,Bs): 7.99 eas: 0.01 :
- “ E Q/ Bs \ L E
Phase 1 (Setup for A,B) A :
. (A1,B1): 10 ¥ (A2,B2): 2 v
' : To spend you need
' Q/ B \ ' money in a fresh
: (As,Bs): 8 ' | account, which does not
: ¢A1 : have money yet, key
e A towards atomicity

32

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30) Phase 3 (Consume for A,B)
~ : (As,Bs): 7.99 eas: 0.01 :
alh da bk ' B | :
4 \» Bs: 8
Phase 1 (Setup for A,B) Q/‘“
ittt Phase 4 (Enable)

L A o : VAL \ ; :
: ' (As,B5): 7.99 eas: 0.01

----------------------------- - 1/ Bs :
./ B’s (B’s,Cs): 6.99 | eac: 0.01 .

Phase 2 (Lock for A,B) @G :

 (AsBa): 8 ;

: o/ Bs \ A Multi-In Multi-Out

: (A4,B4): 8 (MIMO) transaction

: J As ’ creates all fresh

Y addresses in one shot

Atomic Multi-Channel Updates (ACMU)

8 (out of 10)

7 (out of 30)

L I
i dahk

Phase 1 (Setup for A,B)

: (A4,B4I“

o |

Solves ambiguous state
between Enable and

Lock

Phase 3 (Consume for A,B)

EQ/ As \ ; :
(As5,Bs): 7.99 eas: 0.01 ,

(B’5,Cs)2 6.99

" (A7,B7):8 (B7,C7): 7

:Q/ As \) E
(As5,Bs): 7.99 | eas: 0.01

1/ Bs V8 o699

>

Take Home

We can perform off-chain transactions without decreasing security,
supporting

e Cross-chain payments
e synchronisation across arbitrary channels

33

Take Home

» We can perform off-chain transactions without decreasing security,
supporting

e Cross-chain payments

e synchronisation across arbitrary channels

» We are currently working on

Virtual channels to support offline intermediary nodes
Payment channel hubs for enhancing connectivity
Routing protocols for enhancing resilience

as well as on several other blockchain-related topics, like automated
verification of smart contracts

33

Interested in an
internship, PhD, PostDoc, research visit, talk?

34

Vienna Security and Privacy Research Center

VISP

~
Founding members Collaborating partners
M I|S‘T AUSTRIA AT e
. . SBA
Research
-)

Numbers
e 7 ERC grants
e >10 professors working on S&P and related fields
e >100 doctoral and postdoctoral researchers

35

VISP Research Areas
AUSTRIA

> Lhiversitat
Jwien

-
Pietrazk Fuchsbauer Lindorfer Weippl Schmi Zseby
Cryptography System Security Network Security

Kovac Shafique Bartocci Kastner
S&P Verification S&P in loT/CPS Hardware
Machine Learning Security Security

36

