
FAKULTÄT FÜR
!NFORMATIK
Faculty of Informatics

SECURITY &
PRIVACY
GROUP

Security and Privacy for
Payment Channel Networks

Matteo Maffei

DLT 2020 - Ancona 5/2/2020

‣ Decentralized data structure recording each transaction in
order to provide public verifiability

‣ Global consensus: everyone checks the whole blockchain

 2

 Scalability Problem

Bitcoin’s transaction rate: ~10 tx/sec
Visa’s transaction rate: ~10K tx/sec

‣ On-chain, consensus layer (tweak consensus)  
e.g., DAG Blockchain, sharding, ...

‣ Off-chain, application layer (local consensus, blockchain used
only in case of disputes)
• Payment Channel Networks

• Many other research projects (Bolt, Z-Channels,
Tumblebit, Perun, ...)

Lightning Network
(Bitcoin)

Raiden Network
(Ethereum)

 3

Scalability Solutions

‣ On-chain, consensus layer (tweak consensus)  
e.g., DAG Blockchain, sharding, ...

‣ Off-chain, application layer (local consensus, blockchain used
only in case of disputes)
• Payment Channel Networks

• Many other research projects (Bolt, Z-Channels,
Tumblebit, Perun, ...)

Lightning Network
(Bitcoin)

Raiden Network
(Ethereum)

 3

Scalability Solutions

 4

Background on
Payment Channel Networks

 5

Payment Channels: Open

Alice Bob

Blockchain

 5

Payment Channels: Open

Alice Bob

Blockchain

Multisig Contract

Can be spent only with the
signatures of both Alice and Bob

5 1

‣ Alice creates multisig contract to
deposit money on the channel

5 (Alice)

5 (Alice,Bob)

Alice

 5

Payment Channels: Open

Alice Bob

Blockchain

Multisig Contract

Can be spent only with the
signatures of both Alice and Bob

5 1

‣ Alice creates multisig contract to
deposit money on the channel

‣ Alice lets Bob sign a refund
transaction to unlock the money

5 (Alice,Bob)

5 (Alice)

Alice,Bob

Timelock

The transaction is valid only after a
certain time

5 (Alice)

5 (Alice,Bob)

Alice

 6

Payment Channels: Open

Alice Bob

Blockchain

5 1

5 (Alice)

5 (Alice,Bob)

Alice

‣ Alice creates multisig contract to
deposit money on the channel

‣ Alice lets Bob sign a refund
transaction to unlock the money

‣ Alice places the multisig contract
onchain

5 (Alice,Bob)

5 (Alice)

Alice,Bob

 7

Payment Channels: Transactions

Blockchain

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

4 1

Alice Bob

5 (Alice)

5 (Alice,Bob)

Alice

 8

Payment Channels: Transactions

Blockchain

5 (Alice, Bob)

3 (Alice)

2 (Bob)

Alice ?? Bob

3 2

Alice Bob
5 (Alice, Bob)

3 (Alice)

2 (Bob)

Alice ?? Bob

5 (Alice)

5 (Alice,Bob)

Alice

Under the hood

Mechanisms for bidirectional payments
and for revocation of old states

5 (Alice, Bob)
3 (Alice)

2 (Bob)

 Alice,Bob

Payment Channels: Close

Blockchain

Alice Bob

5 (Alice)

5 (Alice,Bob)

Alice

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol
Send 1

BTC to Carol

One cannot open channels with everyone...
exploit channel paths!⇒

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send 1
BTC to Carol

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send 1
BTC to Carol

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to Carol

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send 1
BTC to Carol

Fee acts as an incentive for
Bob to participate in the

payment

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to Carol

3-fee 2f
e
e

3-fee 2f
e
e

1. Send 1 BTC + fee to Bob

Should happen atomically

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send 1
BTC to Carol

Fee acts as an incentive for
Bob to participate in the

payment

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to Carol

3-fee 2f
e
e

3-fee 2f
e
e

1. Send 1 BTC + fee to Bob

 11

The Lightning Network (LN)

5

 12

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 1

Alice Bob
y

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

5

 12

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

By revealing the preimage x of
the hash y=h(x), Bob can

enforce the payment

5

 12

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x
The transaction is valid

only until time

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

By revealing the preimage x of
the hash y=h(x), Bob can

enforce the payment

5

 12

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x

HTLC (Alice, Bob, 1, y,):
Alice pays Bob 1 BTC iff Bob shows some

x such that H(x) = y before

The transaction is valid
only until time

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

By revealing the preimage x of
the hash y=h(x), Bob can

enforce the payment

3 2

 13

HTLC for Multi-hop Payments

Alice Bob Carol

y:= H(x)

x

2 3

3 2

 13

HTLC for Multi-hop Payments

Alice Bob Carol

y:= H(x)

x

y

2 3

3 2

 13

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t)

y:= H(x)

x

y

2 31.10.9 3

1

3 2

 13

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

2 31.10.9 3

1

3 2

 13

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

x

2 32 31.10.9 3

1

3 2

 13

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

x x

2 32 31.10.9 3

1

0.9 4.1

3 2

 13

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y
Requirement: t > t’

(after Carol revealed x to Bob, there
must still be time for Bob to reveal x to

Alice)

x x

2 32 31.10.9 3

1

0.9 4.1

‣ Lightning Network & Co work allow us to perform payments offchain
• fast, no confirmation delay
• little fees
• minimal information stored on the blockchain
• secure and privacy-preserving (at a first glance...)

‣ The blockchain is used only to mediate disputes...cool!

 14

Take home...

3 2
Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

x x

2 32 310. 3

1

0.9 4.1

 15

Security + Privacy in PCNs

Are off-chain payments in PCNs privacy-preserving
 by default?

(individual payments are not recorded on the blockchain)

Are off-chain payments in PCNs secure?
(No honest participant looses money)

 15

Security + Privacy in PCNs

Are off-chain payments in PCNs privacy-preserving
 by default?

(individual payments are not recorded on the blockchain)

Are off-chain payments in PCNs secure?
(No honest participant looses money)

NO!

NO!

 16

Security and Privacy Issues in
Existing PCNs

ACM CCS 2017

NDSS 2019

 17

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

B

 17

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x
B

 17

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x

x

B

 17

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x

x

x
B

 17

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x

x

x

B considers the payment to be
failed and unlocks his funds

after the timeout

B

 17

Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4)

y:= H(x)

x

x

x

x

B considers the payment to be
failed and unlocks his funds

after the timeout

B

gets 1.3 (no
payment to B)

pays 1 (no payment
from B)

Attacker earns 0.3 BTC (own fees + B’s fees)

 18

Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)

HTLC(E2,C,v4,y’,t4)

 18

Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)

HTLC(E2,C,v4,y’,t4)

 18

Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)

HTLC(E2,C,v4,y’,t4)

 18

Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1)

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3)

HTLC(E2,C,v4,y,t4)

B

A’
C’

pays to

pays to
≈ pays to

pays to

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1)

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3)

HTLC(E2,C,v4,y’,t4)

 19

Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2B

(k1 + k2 + k3 + k4)*G

 19

Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2B

(k1 + k2 + k3 + k4)*G

Conditions look random
(as they differ by a secret random

factor)

 19

Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

Conditions look random
(as they differ by a secret random

factor)

 19

Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)

- k4

Conditions look random
(as they differ by a secret random

factor)

 19

Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)

- k3 - k4

Conditions look random
(as they differ by a secret random

factor)

 19

Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)k1

- k2 - k3 - k4

Conditions look random
(as they differ by a secret random

factor)

 19

Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)k1

A valid key can only be
extracted from a valid
key for the right lock

- k2 - k3 - k4

Conditions look random
(as they differ by a secret random

factor)

 19

Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4)

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2

(k1 + k2 + k3 + k4)

B

(k1 + k2 + k3 + k4)*G

(k1 + k2 + k3)(k1 + k2)k1

A valid key can only be
extracted from a valid
key for the right lock

- k2 - k3 - k4

Conditions look random
(as they differ by a secret random

factor)

Achieved Properties

No coin loss

1.Atomicity:
If a user’s right lock gets
opened, he can open his
left lock

2.Consistency:
A user can open his left
lock only if his right lock
was released

3.Relationship Anonymity:
A user learns about no other
participant of the payment
path than his direct
neighbours

No Wormhole Attacks Privacy

ECDSA-based
construction

 20

Anonymous Multi-hop-Locks (AMHL)

Ideal functionality
(capturing atomicity,

consistency + relationship
anonymity)

Construction from
homomorphic one-

way functions

Schnorr-based
construction

provably realise in the UC framework

compatible with
Bitcoin, Ethereum, etc.

ECDSA-based
construction

 20

Anonymous Multi-hop-Locks (AMHL)

Ideal functionality
(capturing atomicity,

consistency + relationship
anonymity)

Construction from
homomorphic one-

way functions

Schnorr-based
construction

Schnorr-based
construction

provably realise in the UC framework

compatible with
Bitcoin, Ethereum, etc.

 21

Scriptless Scripts

yy

5

 21

Scriptless Scripts

Alice
(skA)

Bob
(skB)yy

AB

hypothetical “shared identity”

skAB = skA * skBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5

 21

Scriptless Scripts
4 1

Alice
(skA)

Bob
(skB)yy

AB

hypothetical “shared identity”

skAB = skA * skBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5 (AB)
4 (Alice)

1 (Bob)

y
AB ??k

5

 21

Scriptless Scripts
4 1

Alice
(skA)

Bob
(skB)yy

AB

hypothetical “shared identity”

skAB = skA * skBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨

5 (AB)
4 (Alice)

1 (Bob)

y
AB ??k

Alice can retrieve
secret k from full

signature

Bob gets sufficient
information for checking
that the “half signature”

produced by Alice and Bob
can be completed to a
valid signature given k

 22

Schnorr-based Lock, Simplified
pkI = xI ⋅ G
skI = xI

sig(ri, m, sk, pk) = (RI, ri − ski ⋅ H(pki | |RI | |m))
RI = rI ⋅ G Schnorr Signature for I

 22

Schnorr-based Lock, Simplified
pkI = xI ⋅ G
skI = xI

sig(ri, m, sk, pk) = (RI, ri − ski ⋅ H(pki | |RI | |m))
RI = rI ⋅ G Schnorr Signature for I

Lo
ck

 P
ro

to
co

l C=k*G, transaction

Jointly, randomly generate C

rB − skB ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

rA − skA ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

Alice can retrieve
secret k from full

signature

Bob gets sufficient
information for checking
that the “half signature”

produced by Alice and Bob
can be completed to a
valid signature given k

 22

Schnorr-based Lock, Simplified
pkI = xI ⋅ G
skI = xI

sig(ri, m, sk, pk) = (RI, ri − ski ⋅ H(pki | |RI | |m))
RI = rI ⋅ G Schnorr Signature for I

Lo
ck

 P
ro

to
co

l C=k*G, transaction

Jointly, randomly generate C

rB − skB ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

rA − skA ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

Alice can retrieve
secret k from full

signature

Bob gets sufficient
information for checking
that the “half signature”

produced by Alice and Bob
can be completed to a
valid signature given k

k+

After learning k, Bob can finalise the signature as

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

And Alice can derive k from it

 22

Schnorr-based Lock, Simplified

Hard for ECDSA as σR has a non-linear structure,
for details please look at the paper

pkI = xI ⋅ G
skI = xI

sig(ri, m, sk, pk) = (RI, ri − ski ⋅ H(pki | |RI | |m))
RI = rI ⋅ G Schnorr Signature for I

Lo
ck

 P
ro

to
co

l C=k*G, transaction

Jointly, randomly generate C

rB − skB ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

rA − skA ⋅ H(pkA ⋅ pkB | |RA + RB + C | |m)

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

Alice can retrieve
secret k from full

signature

Bob gets sufficient
information for checking
that the “half signature”

produced by Alice and Bob
can be completed to a
valid signature given k

k+

After learning k, Bob can finalise the signature as

(rA + rB) − (skA + skB) ⋅ H(pkA + pkB | |RA + RB + C | |m)

And Alice can derive k from it

 23

Properties/Evaluation

‣ Security and Privacy proven in the UC Framework
‣ Compatible with Bitcoin and current PCNs
✓Implemented in the Lightning Network  

(https://github.com/cfromknecht/tpec), KZen, Comet, …
‣ Reduces transaction size for conditional payments
✓Encoding of condition within signature

‣ Makes settlement transactions indistinguishable from regular
ones (Fungibility)

‣ Little overhead:
✓< 500 bytes communication
✓ few ms computation

Alice ?? Bob AB⤳

AB ?k⤳

https://github.com/cfromknecht/tpec

‣ AMHLs are suitable for cross-currency usage, even with
different primitive instantiations

✓ Inter-currency payment channels

✓ Atomic swaps

✓ All major cryptocurrencies (including Monero [Moreno-
Sanchez et al., FC’20]) are supported

 24

Interoperability

EC
DSA

DLOG

 25

Summary
The Wormhole Attack:

A novel attack on Payment Channel
Network Security

Concrete constructions of AMHLs that

… got implemented in Bitcoin’s
Lightning Network

… enable inter-blockchain
Payment Channels

… are efficient

AMHLs: A new primitive for secure +
anonymous Payment Channel Networks

 26

Beyond Path-based Transactions
ACM CCS 2019

‣ In this work, we identify two open challenges: 

• Restricted expressiveness (and functionality)
− Current Bitcoin-compatible PCNs restricted to single path-based

payments 

• High collateral
− A payment requires to put aside coins for a very long time

 27

Open Challenges

 28

Our Goal: Full Expressiveness

‣ Support for arbitrary graph topology
‣ Enable new applications:

‣ Crowd funding
‣ Channel rebalancing
‣ Netting
‣ Your own application?

‣ Each payment of k coins along an n-channel path requires to put aside at
least kn coins

‣ Also, each user i has to lock her coins for a time Δ(n-i) where Δ is the time to
safely close a channel

‣ Coins locked too long!

 29

Collateral

k+fees
coins
nΔ time

k coins
Δ time

... n-2 channels ...

‣ The adversary has a time amplification factor of n-1
‣ Δ is 1 day in the Lightning network!
‣ The attacker can use several paths

 30

Griefing attack

... n-2 channels ...

k+fees
coins
nΔ time

k coins
Δ time

 31

Our Goal: Constant Collateral

... n-2 channels ...

k+fees
coins
nΔ time

k coins
Δ time

‣ Constant collateral: Coins are locked only for Δ time, independently of the
number of channels

 31

Our Goal: Constant Collateral

... n-2 channels ...

k+fees
coins
nΔ time

k coins
Δ time

k+fees
coins
Δ time

‣ Constant collateral: Coins are locked only for Δ time, independently of the
number of channels

‣ Reduces the amplification factor

 31

Our Goal: Constant Collateral

... n-2 channels ...

k+fees
coins
nΔ time

k coins
Δ time

k+fees
coins
Δ time

‣ Constant collateral: Coins are locked only for Δ time, independently of the
number of channels

‣ Reduces the amplification factor
‣ Feasible in Ethereum-based PCNs: Sprites1

 31

Our Goal: Constant Collateral

... n-2 channels ...

k+fees
coins
nΔ time

k coins
Δ time

k+fees
coins
Δ time

1 A. Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning.

‣ Constant collateral: Coins are locked only for Δ time, independently of the
number of channels

‣ Reduces the amplification factor
‣ Feasible in Ethereum-based PCNs: Sprites1

 31

Our Goal: Constant Collateral

... n-2 channels ...

k+fees
coins
nΔ time

k coins
Δ time

k+fees
coins
Δ time

1 A. Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning.

‣ Constant collateral: Coins are locked only for Δ time, independently of the
number of channels

‣ Reduces the amplification factor
‣ Feasible in Ethereum-based PCNs: Sprites1

 31

Our Goal: Constant Collateral

... n-2 channels ...

k+fees
coins
nΔ time

k coins
Δ time

k+fees
coins
Δ time

1 A. Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning.

AMCU: Constant collateral
and backwards compatible

with Bitcoin script

 32

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B) Split the channel so that
2 coins are still available

 32

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B)

Phase 2 (Lock for A,B)

(A3,B3): 8

(A4,B4): 8
A3

B3

After some time you get
back the money (in case

of failure in the next
phases)

 32

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B)

Phase 2 (Lock for A,B)

Phase 3 (Consume for A,B)

(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

To spend you need
money in a fresh

account, which does not
have money yet, key

towards atomicity

 32

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B)

Phase 2 (Lock for A,B)

Phase 3 (Consume for A,B)

Phase 4 (Enable)

(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

(A3,B3): 8

eAB: 0.01(A5,B5): 7.99
A3

(B’3,C3): 7

(B’5,C5): 6.99 eBC: 0.01
B3

B’3
C3

A Multi-In Multi-Out
(MIMO) transaction

creates all fresh
addresses in one shot

 32

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B)

Phase 2 (Lock for A,B)

Phase 3 (Consume for A,B)

Phase 4 (Enable)

Phase 5 (Disable)
(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

(A3,B3): 8

eAB: 0.01(A5,B5): 7.99
A3

(B’3,C3): 7

(B’5,C5): 6.99 eBC: 0.01
B3

B’3
C3

(A7,B7): 8

eAB: 0.01(A5,B5): 7.99
A5

(B’7,C7): 7

(B’5,C5): 6.99 eBC: 0.01
B5

B’5
C5

eAB

eBC

Solves ambiguous state
between Enable and

Lock

‣ We can perform off-chain transactions without decreasing security,
supporting
• cross-chain payments
• synchronisation across arbitrary channels

 33

Take Home

‣ We can perform off-chain transactions without decreasing security,
supporting
• cross-chain payments
• synchronisation across arbitrary channels

‣ We are currently working on
• Virtual channels to support offline intermediary nodes
• Payment channel hubs for enhancing connectivity
• Routing protocols for enhancing resilience
• as well as on several other blockchain-related topics, like automated

verification of smart contracts

 33

Take Home

 34

Interested in an
internship, PhD, PostDoc, research visit, talk?

 35

Vienna Security and Privacy Research Center

V i S P
Founding members Collaborating partners

Numbers
• 7 ERC grants
• >10 professors working on S&P and related fields
• >100 doctoral and postdoctoral researchers

 36

ViSP Research Areas

Cryptography System Security Network Security

S&P Verification S&P in
Machine Learning

Hardware
Security

Pietrazk Fuchsbauer Lindorfer Weippl Zseby

Maffei Kovacs Henzinger Shafique Kastner
IoT/CPS
Security

Bartocci

Schmid

