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‣ Decentralized data structure recording each transaction in 
order to provide public verifiability

‣ Global consensus: everyone checks the whole blockchain
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 Scalability Problem

Bitcoin’s transaction rate: ~10 tx/sec
Visa’s transaction rate: ~10K tx/sec 



‣ On-chain, consensus layer (tweak consensus)   
e.g., DAG Blockchain, sharding, ... 

‣ Off-chain, application layer (local consensus, blockchain used 
only in case of disputes)   
• Payment Channel Networks

• Many other research projects (Bolt, Z-Channels, 
Tumblebit, Perun, ...)

Lightning Network 
(Bitcoin)

Raiden Network 
(Ethereum)
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Scalability Solutions
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Background on 
Payment Channel Networks
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Payment Channels: Open

Alice Bob

Blockchain
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Payment Channels: Open

Alice Bob

Blockchain

Multisig Contract 

Can be spent only with the 
signatures of both Alice and Bob

5 1

‣ Alice creates multisig contract to 
deposit money on the channel

5 (Alice)

5 (Alice,Bob)

Alice
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Payment Channels: Open

Alice Bob

Blockchain

Multisig Contract 

Can be spent only with the 
signatures of both Alice and Bob

5 1

‣ Alice creates multisig contract to 
deposit money on the channel

‣ Alice lets Bob sign a refund 
transaction to unlock the money

5 (Alice,Bob)

5 (Alice)

Alice,Bob

Timelock 

The transaction is valid only after a 
certain time

5 (Alice)

5 (Alice,Bob)

Alice



 6

Payment Channels: Open

Alice Bob

Blockchain

5 1

5 (Alice)

5 (Alice,Bob)

Alice

‣ Alice creates multisig contract to 
deposit money on the channel

‣ Alice lets Bob sign a refund 
transaction to unlock the money

‣ Alice places the multisig contract 
onchain

5 (Alice,Bob)

5 (Alice)

Alice,Bob
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Payment Channels: Transactions

Blockchain

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice  ?? Bob

4 1

Alice Bob

5 (Alice)

5 (Alice,Bob)

Alice
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Payment Channels: Transactions

Blockchain

5 (Alice, Bob)

3 (Alice)

2 (Bob)

Alice  ?? Bob

3 2

Alice Bob
5 (Alice, Bob)

3 (Alice)

2 (Bob)

Alice  ?? Bob

5 (Alice)

5 (Alice,Bob)

Alice

Under the hood 

Mechanisms for bidirectional payments 
and for revocation of old states



5 (Alice, Bob)
3 (Alice)

2 (Bob)

  Alice,Bob

Payment Channels: Close

Blockchain

Alice Bob

5 (Alice)

5 (Alice,Bob)

Alice



 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol
Send 1 

BTC to Carol

One cannot open channels with everyone...
exploit channel paths!⇒



 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send 1 
BTC to Carol



 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send 1 
BTC to Carol

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to Carol



 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send 1 
BTC to Carol

Fee acts as an incentive for 
Bob to participate in the 

payment

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to Carol

3-fee 2f 
e 
e

3-fee 2f 
e 
e

1. Send 1 BTC + fee to Bob



Should happen atomically 
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Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send 1 
BTC to Carol

Fee acts as an incentive for 
Bob to participate in the 

payment

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to Carol

3-fee 2f 
e 
e

3-fee 2f 
e 
e

1. Send 1 BTC + fee to Bob
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The Lightning Network (LN) 



5
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Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice  ?? Bob

4 1

Alice Bob
y

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice  ?? Bob
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Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice  ?? Bob

4 14 1

Alice Bob
y

x

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice  ?? Bob

y

By revealing the preimage x of 
the hash y=h(x),  Bob can 

enforce  the payment 
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Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice  ?? Bob

4 14 1

Alice Bob
y

x
The transaction is valid 

only until time      

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice  ?? Bob

y

By revealing the preimage x of 
the hash y=h(x),  Bob can 

enforce  the payment 
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Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice  ?? Bob

4 14 1

Alice Bob
y

x

HTLC (Alice, Bob, 1, y,    ): 
Alice pays Bob 1 BTC iff Bob shows some  

x such that H(x) = y before 

The transaction is valid 
only until time      

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice  ?? Bob

y

By revealing the preimage x of 
the hash y=h(x),  Bob can 

enforce  the payment 
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HTLC for Multi-hop Payments

Alice Bob Carol

y:= H(x)

x

2 3



3 2
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Alice Bob Carol

y:= H(x)

x

y
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HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) 

y:= H(x)

x

y

2 31.10.9 3

1



3 2
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HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’) 

2 21

y:= H(x)

x

y

2 31.10.9 3

1
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HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’) 

2 21

y:= H(x)

x

y

x

2 32 31.10.9 3

1
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HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’) 

2 21

y:= H(x)

x

y

x x

2 32 31.10.9 3

1

0.9 4.1
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HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’) 

2 21

y:= H(x)

x

y
Requirement: t > t’ 

(after Carol revealed x to Bob, there 
must still be time for Bob to reveal x to 

Alice)  

x x

2 32 31.10.9 3

1

0.9 4.1



‣ Lightning Network & Co work allow us to perform payments offchain 
• fast, no confirmation delay
• little fees 
• minimal information stored on the blockchain
• secure and privacy-preserving (at a first glance...) 

‣ The blockchain is used only to mediate disputes...cool!
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Take home...

3 2
Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’) 

2 21

y:= H(x)

x

y

x x

2 32 310. 3

1

0.9 4.1
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Security + Privacy in PCNs

Are off-chain payments in PCNs privacy-preserving  
 by default? 

(individual payments are not recorded on the blockchain) 

Are off-chain payments in PCNs secure? 
(No honest participant looses money)
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Security + Privacy in PCNs

Are off-chain payments in PCNs privacy-preserving  
 by default? 

(individual payments are not recorded on the blockchain) 

Are off-chain payments in PCNs secure? 
(No honest participant looses money)

NO!

NO!
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Security and Privacy Issues in 
Existing PCNs

ACM CCS 2017

NDSS 2019
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Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4) 

y:= H(x)

x

B
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Security Issue: The Wormhole Attack

A CE1 E2

HTLC(A, E1,1.3,y, t1) HTLC(E1, B,1.2,y, t2) HTLC(B, E2,1.1,y, t3) HTLC(E2, C,1,y, t4) 

y:= H(x)

x

x

x

x

B considers the payment to be 
failed and unlocks his funds 

after the timeout

B

gets 1.3 (no 
payment to B)

pays 1 (no payment 
from B)

Attacker earns 0.3 BTC (own fees + B’s fees)
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Privacy Issues in HTLC Payments

A C

E1 E2

HTLC(A,E1,v1,y,t1) 

HTLC(E1,B,v2,y,t2) HTLC(B,E2,v3,y,t3) 

HTLC(E2,C,v4,y,t4) 

B

A’
C’

Relationship Anonymity: On-path adversaries do not learn who pays to whom

HTLC(A,E1,v1,y’,t1) 

HTLC(E1,B,v2,y’,t2) HTLC(B,E2,v3,y’,t3) 

HTLC(E2,C,v4,y’,t4) 
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Anonymous Multi-hop Locks

Lock(A, E1,1.3,C1,t1) Lock(E1,B,1.2,C2,t2) Lock(B,E2,1.1,C3,t3) Lock(E2,C,1,C4, t4) 

(k4, C4)(k2, C2) (k3, C3) (k1 + k2 + k3 + k4)

k1*G (k1 + k2)*G (k1 + k2 + k3)*G

A CE1 E2B

(k1 + k2 + k3 + k4)*G
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(as they differ by a secret random 

factor)
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Achieved Properties

No coin loss

1.Atomicity: 
If a user’s right lock gets 
opened, he can open his 
left lock

2.Consistency: 
A user can open his left 
lock only if his right lock 
was released

3.Relationship Anonymity: 
A user learns about no other 
participant of the payment 
path than his direct 
neighbours

No Wormhole Attacks Privacy



ECDSA-based 
construction
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Anonymous Multi-hop-Locks (AMHL)

Ideal functionality 
(capturing atomicity, 

consistency + relationship 
anonymity) 

Construction from 
homomorphic one-

way functions

Schnorr-based 
construction

provably realise in the UC framework

compatible with 
Bitcoin, Ethereum, etc.
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Scriptless Scripts

yy



5
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Scriptless Scripts

Alice 
(skA)

Bob 
(skB)yy

AB

hypothetical “shared identity”

skAB = skA * skBBlockchain

5 (Alice)

5 (Alice,Bob)

5 (Alice)

≤

>
5 (Alice)

5 (AB)

5 (Alice)

≤

>
Alice

∨
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Scriptless Scripts
4 1

Alice 
(skA)

Bob 
(skB)yy

AB

hypothetical “shared identity”
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Alice can retrieve 
secret k from full 

signature

Bob gets sufficient 
information for checking 
that the “half signature” 

produced by Alice and Bob 
can be completed to a 
valid signature given k
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Schnorr-based Lock, Simplified
pkI = xI ⋅ G
skI = xI

sig(ri, m, sk, pk) = (RI, ri − ski ⋅ H(pki | |RI | |m))
RI = rI ⋅ G Schnorr Signature for I
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Schnorr-based Lock, Simplified

Hard for ECDSA as σR has a non-linear structure, 
for details please look at the paper
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Properties/Evaluation

‣ Security and Privacy proven in the UC Framework
‣ Compatible with Bitcoin and current PCNs
✓Implemented in the Lightning Network  

(https://github.com/cfromknecht/tpec), KZen, Comet, …
‣ Reduces transaction size for conditional payments 
✓Encoding of condition within signature

‣ Makes settlement transactions indistinguishable from regular 
ones (Fungibility)

‣ Little overhead: 
✓< 500 bytes communication
✓ few ms computation

Alice  ?? Bob AB⤳

AB ?k⤳

https://github.com/cfromknecht/tpec


‣ AMHLs are suitable for cross-currency usage, even with 
different primitive instantiations 

✓ Inter-currency payment channels

✓ Atomic swaps

✓ All major cryptocurrencies (including Monero [Moreno-
Sanchez et al., FC’20]) are supported
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Interoperability 

EC
DSA

DLOG
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Summary
The Wormhole Attack:  

A novel attack on Payment Channel 
Network Security

Concrete constructions of AMHLs that

… got implemented in Bitcoin’s 
Lightning Network

… enable inter-blockchain 
Payment Channels

… are efficient

AMHLs: A new primitive for secure + 
anonymous Payment Channel Networks
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Beyond Path-based Transactions
ACM CCS 2019



‣ In this work, we identify two open challenges: 

• Restricted expressiveness (and functionality)
− Current Bitcoin-compatible PCNs restricted to single path-based 

payments 

• High collateral
− A payment requires to put aside coins for a very long time

 27

Open Challenges
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Our Goal: Full Expressiveness

‣ Support for arbitrary graph topology
‣ Enable new applications:

‣ Crowd funding
‣ Channel rebalancing
‣ Netting
‣ Your own application?



‣ Each payment of k coins along an n-channel path requires to put aside at 
least kn coins 

‣ Also, each user i has to lock her coins for a time Δ(n-i) where Δ is the time to 
safely close a channel 

‣ Coins locked too long!
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Collateral 

k+fees 
coins
nΔ time

k coins 
Δ time

... n-2 channels ...



‣ The adversary has a time amplification factor of n-1 
‣ Δ is 1 day in the Lightning network!
‣ The attacker can use several paths
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Griefing attack

... n-2 channels ...

k+fees 
coins
nΔ time

k coins 
Δ time
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Our Goal: Constant Collateral

... n-2 channels ...

k+fees 
coins
nΔ time

k coins 
Δ time



‣ Constant collateral: Coins are locked only for Δ time, independently of the 
number of channels
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Our Goal: Constant Collateral

... n-2 channels ...

k+fees 
coins
nΔ time

k coins 
Δ time

k+fees 
coins
Δ time



‣ Constant collateral: Coins are locked only for Δ time, independently of the 
number of channels

‣ Reduces the amplification factor
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... n-2 channels ...

k+fees 
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nΔ time
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Δ time
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Δ time



‣ Constant collateral: Coins are locked only for Δ time, independently of the 
number of channels

‣ Reduces the amplification factor
‣ Feasible in Ethereum-based PCNs: Sprites1
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... n-2 channels ...

k+fees 
coins
nΔ time

k coins 
Δ time

k+fees 
coins
Δ time

1 A. Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning. 
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‣ Constant collateral: Coins are locked only for Δ time, independently of the 
number of channels

‣ Reduces the amplification factor
‣ Feasible in Ethereum-based PCNs: Sprites1

 31

Our Goal: Constant Collateral

... n-2 channels ...

k+fees 
coins
nΔ time

k coins 
Δ time

k+fees 
coins
Δ time

1 A. Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning. 

AMCU: Constant collateral 
and backwards compatible 

with Bitcoin script
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Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B) Split the channel so that 
2 coins are still available 
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Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B)

Phase 2 (Lock for A,B)

(A3,B3): 8

(A4,B4): 8
A3

B3

After some time you get 
back the money (in case 

of failure in the next 
phases)
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Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B)

Phase 2 (Lock for A,B)

Phase 3 (Consume for A,B)

(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

To spend you need 
money in a fresh 

account, which does not 
have money yet, key 

towards atomicity  
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Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B)

Phase 2 (Lock for A,B)

Phase 3 (Consume for A,B)

Phase 4 (Enable)

(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

(A3,B3): 8

eAB: 0.01(A5,B5): 7.99
A3

(B’3,C3): 7

(B’5,C5): 6.99 eBC: 0.01
B3

B’3
C3

A Multi-In Multi-Out 
(MIMO) transaction 

creates all fresh 
addresses in one shot 
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Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase 1 (Setup for A,B)

Phase 2 (Lock for A,B)

Phase 3 (Consume for A,B)

Phase 4 (Enable)

Phase 5 (Disable)
(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

(A3,B3): 8

eAB: 0.01(A5,B5): 7.99
A3

(B’3,C3): 7

(B’5,C5): 6.99 eBC: 0.01
B3

B’3
C3

(A7,B7): 8

eAB: 0.01(A5,B5): 7.99
A5

(B’7,C7): 7

(B’5,C5): 6.99 eBC: 0.01
B5

B’5
C5

eAB

eBC

Solves ambiguous  state 
between Enable and 

Lock 



‣ We can perform off-chain transactions without decreasing security, 
supporting
• cross-chain payments 
• synchronisation across arbitrary channels
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Take Home



‣ We can perform off-chain transactions without decreasing security, 
supporting
• cross-chain payments 
• synchronisation across arbitrary channels

‣ We are currently working on 
• Virtual channels to support offline intermediary nodes
• Payment channel hubs for enhancing connectivity
• Routing protocols for enhancing resilience 
• as well as on several other blockchain-related topics, like automated 

verification of smart contracts
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Take Home
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Interested in an 
internship, PhD, PostDoc, research visit, talk? 
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